SAXS Merge: an automated statistical method to merge SAXS profiles using Gaussian processes

نویسندگان

  • Yannick G. Spill
  • Seung Joong Kim
  • Dina Schneidman-Duhovny
  • Daniel Russel
  • Ben Webb
  • Andrej Sali
  • Michael Nilges
چکیده

Small-angle X-ray scattering (SAXS) is an experimental technique that allows structural information on biomolecules in solution to be gathered. High-quality SAXS profiles have typically been obtained by manual merging of scattering profiles from different concentrations and exposure times. This procedure is very subjective and results vary from user to user. Up to now, no robust automatic procedure has been published to perform this step, preventing the application of SAXS to high-throughput projects. Here, SAXS Merge, a fully automated statistical method for merging SAXS profiles using Gaussian processes, is presented. This method requires only the buffer-subtracted SAXS profiles in a specific order. At the heart of its formulation is non-linear interpolation using Gaussian processes, which provides a statement of the problem that accounts for correlation in the data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

US-SOMO HPLC-SAXS module: dealing with capillary fouling and extraction of pure component patterns from poorly resolved SEC-SAXS data

Size-exclusion chromatography coupled with SAXS (small-angle X-ray scattering), often performed using a flow-through capillary, should allow direct collection of monodisperse sample data. However, capillary fouling issues and non-baseline-resolved peaks can hamper its efficacy. The UltraScan solution modeler (US-SOMO) HPLC-SAXS (high-performance liquid chromatography coupled with SAXS) module p...

متن کامل

BCL::SAXS: GPU accelerated Debye method for computation of small angle X-ray scattering profiles.

Small angle X-ray scattering (SAXS) is an experimental technique used for structural characterization of macromolecules in solution. Here, we introduce BCL::SAXS--an algorithm designed to replicate SAXS profiles from rigid protein models at different levels of detail. We first show our derivation of BCL::SAXS and compare our results with the experimental scattering profile of hen egg white lyso...

متن کامل

Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons

Small-angle X-ray scattering (SAXS) is an established technique that provides low-resolution structural information on macromolecular solutions. Recent decades have witnessed significant progress in both experimental facilities and in novel data-analysis approaches, making SAXS a mainstream method for structural biology. The technique is routinely applied to directly reconstruct low-resolution ...

متن کامل

FoXS: a web server for rapid computation and fitting of SAXS profiles

Small angle X-ray scattering (SAXS) is an increasingly common technique for low-resolution structural characterization of molecules in solution. SAXS experiment determines the scattering intensity of a molecule as a function of spatial frequency, termed SAXS profile. SAXS profiles can contribute to many applications, such as comparing a conformation in solution with the corresponding X-ray stru...

متن کامل

Bayesian refinement of protein structures and ensembles against SAXS data using molecular dynamics

Small-angle X-ray scattering is an increasingly popular technique used to detect protein structures and ensembles in solution. However, the refinement of structures and ensembles against SAXS data is often ambiguous due to the low information content of SAXS data, unknown systematic errors, and unknown scattering contributions from the solvent. We offer a solution to such problems by combining ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014